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SUMMARY

Sensitization of the capsaicin receptor TRPV1 is cen-
tral to the initiation of pathological forms of pain, and
multiple signaling cascades are known to enhance
TRPV1 activity under inflammatory conditions. How
might detrimental escalation of TRPV1 activity be
counteracted? Using a genetic-proteomic approach,
we identify the GABAB1 receptor subunit as bona fide
inhibitor of TRPV1 sensitization in the context of
diverse inflammatory settings. We find that the
endogenous GABAB agonist, GABA, is released
from nociceptive nerve terminals, suggesting an
autocrine feedback mechanism limiting TRPV1
sensitization. The effect of GABAB on TRPV1 is inde-
pendent of canonical G protein signaling and rather
relies on close juxtaposition of the GABAB1 receptor
subunit and TRPV1. Activating the GABAB1 receptor
subunit does not attenuate normal functioning of
the capsaicin receptor but exclusively reverts its
sensitized state. Thus, harnessing this mechanism
for anti-pain therapy may prevent adverse effects
associated with currently available TRPV1 blockers.

INTRODUCTION

Pathological forms of pain are usually triggered by injury or

inflammation of peripheral sensory neurons of the pain pathway.

A diverse set of inflammatory stimuli can sensitize nociceptive

neurons to promote pain hypersensitivity. As a consequence, in-

hibition of individual inflammatory pathways as ameans to atten-

uate pain is a problematic approach for drug development, as

parallel signaling cascades are still able to drive pathological,

pain-promoting sensitization (Gold and Gebhart, 2010).

One receptor that has been found to serve as downstream

integrator of many inflammatory pathways and thus holds

great hope for anti-pain therapy is the capsaicin receptor

TRPV1 (Caterina et al., 1997; Tominaga et al., 1998).

Next to its physiological function as a detector of noxious

stimuli, a large body of literature attests to a crucial pathological
role for TRPV1. Importantly, inflammatory sensitization leads to

dramatically reduced activation thresholds of TRPV1, producing

hyperalgesia and pain hypersensitivity. Indeed, Trpv1�/� ani-

mals completely lack thermal hyperalgesia, confirming TRPV1’s

central role as integrator of disparate inflammatory pathways

(Caterina et al., 2000; Davis et al., 2000).

TRPV1’s central role in pathological forms of pain has sparked

intense efforts to develop TRPV1 antagonists. However, block-

ing TRPV1 activity per se leads to impaired noxious heat

sensation and produces hypothermia, attesting to a role of this

temperature-gated receptor in homeostatic thermoregulation.

Therefore, preventing and counteracting sensitization of the re-

ceptor while leaving basal TRPV1 activity untouched has been

suggested to be amore promising avenue for pain therapy (Szal-

lasi and Sheta, 2012; Vay et al., 2012; Woolf, 2010).

Combining mouse genetics with proteomics, here we report

the identification of the GABAB1 receptor as a modulator of

TRPV1 sensitization.

Canonical GABAB signaling requires GABAB1 and GABAB2

receptor subunits to orchestrate activation of inhibitory G pro-

teins (Gassmann et al., 2004; Jones et al., 1998; Kaupmann

et al., 1998; Kuner et al., 1999; White et al., 1998). Surprisingly,

the GABAB2 subunit is dispensable for mediating inhibition of

TRPV1 sensitization, demonstrating that the underlying mecha-

nism diverges from canonical GABAB receptor signaling.

Collectively, our results establish an endogenous GABA/

GABAB1 feedback mechanism that keeps TRPV1-mediated

pain hypersensitivity in check.

RESULTS

Transgenic Tag-TRPV1 Recapitulates Native TRPV1
Function
Given the complex integrative function of the capsaicin receptor,

we reasoned that analysis of TRPV1 accessory proteins would

shed light on unrecognized modulation of the receptor. There-

fore, we utilized a genetic-biochemical approach to identify

components of TRPV1 protein complexes isolated from native

sensory tissue of transgenic animals.

To achieve efficient and specific biochemical purification of

TRPV1 protein complexes for downstream analysis by mass

spectrometry, we generated mice expressing an affinity-tagged
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Figure 1. Tag-TRPV1 Reproduces Native TRPV1 Expression and

Function

(A) Cartoon depicting Tag-TRPV1.

(B) Western blot of solubilized membrane fractions of DRG derived from WT,

Trpv1�/�, and Trpv1�/�;Tag-Trpv1 mice.

(C) Immunostaining of DRG derived from WT and Tag-Trpv1 mice with anti-

Flag (green) and anti-TRPV1 (red) antibodies reveals that Tag-TRPV1 re-

capitulates the expression profile of the native receptor.

(D) Tag-TRPV1 expression rescues capsaicin responses in Trpv1�/� mice.

Cultured DRG neurons obtained from WT, Trpv1�/�, and Trpv1�/�;Tag-Trpv1
mice were challenged with capsaicin and the proportion of responders as-

sessed by calcium imaging. Error bars represent SEM.

(E) Immunostaining of Tag-TRPV1 (anti-Flag antibody, green) and the pan-

neuronal marker PGP9.5 (red) of corneas derived fromWT and Tag-Trpv1mice

reveals that Tag-TRPV1 protein is transported to peripheral sensory endings.

Scale bars, 50 mm.

See also Figure S1.
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version of TRPV1 (Tag-TRPV1, Figure 1A). Western blotting of

protein extracts derived from sensory ganglia (dorsal root

ganglia, DRG) of transgenic animals revealed the expected

size of the tagged receptor protein, which is slightly shifted to-

ward higher molecular weight compared to native (untagged)

TRPV1 (Figure 1B).

To assure identification of physiological relevant TRPV1 pro-

tein complex components, we first verified cell-type-specific

expression and functionality of the tagged receptor in BAC trans-

genic animals. Tag-TRPV1 expression recapitulated the native

profile in DRG (Figures 1C, S1A, and S1B). Accordingly, the

tagged receptor rescued capsaicin responses in DRG sensory

neurons derived from transgenic animals crossed onto the

TRPV1 knockout background (Figures 1D and S1C). Importantly,

the Tag did not impair trafficking of TRPV1 to peripheral and

central nerve terminals (Figures 1E and S1D).

Finally, we tested TRPV1-dependent nociceptive behavior.

Whereas we observed normal responses to heat stimuli in a

transgenic mouse line expressing close to physiological levels

of Tag-TRPV1, a second line, expressing high levels of the

tagged receptor (Figure S1E), exhibited significantly reduced

pain thresholds (Figure S1F). These findings not only prove the

functionality of the tagged receptor in vivo but also underscore

TRPV1’s predominance in mediating heat hyperalgesia.

Mass Spectrometry Reveals the GABAB1 Subunit as a
Constituent of TRPV1 Protein Complexes
Next, utilizing the Strep or Flagmoiety of the tagged receptor, we

affinity purified protein complexes extracted from DRG of trans-

genic animals expressing both the tagged and the native form of

the receptor. Wild-type animals devoid of the tagged receptor

served as control.

Mass spectrometry revealed the presence of TRPV2—a TRP

family member previously shown to interact with TRPV1 (Rutter

et al., 2005)—in purified protein complexes, further validating

our approach. The GABAB1 receptor subunit was identified as

one of the most abundant components of native TRPV1 protein

complexes, regardless of Tag-TRPV1 expression level (Figures

2A and S2A and Table S1).

Interestingly, GABAB receptors in the CNS have long been

known to mediate analgesia (Sokal and Chapman, 2003). How-

ever, GABAB mechanisms specifically targeting the peripheral

nociceptive pathway have not been identified. Surprisingly,

GABAB receptors are robustly expressed in peripheral nocicep-

tive neurons (Charles et al., 2001; Towers et al., 2000), suggest-

ing an unrecognized role for GABAB in the pain pathway. We

were able to confirm these results and found that most, if not

all, TRPV1-positive sensory neurons express the GABAB1 sub-

unit (Figure 2B).

We validated the presence of GABAB1 in TRPV1 protein com-

plexes by immunoprecipitation (IP) of Tag-TRPV1 or GABAB1

(Figures 2C and 2D).

To further confirm the close proximity of the two transmem-

brane receptors in their native environment, we carried out prox-

imity ligation assays (PLA). In this assay, a fluorescent signal is

generated when two proteins of interest either physically interact

directly or coexist within close molecular distance (Söderberg

et al., 2006). We therefore cultured DRG neurons of Tag-Trpv1
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Figure 2. GABAB1 and TRPV1Reside in CommonProtein Complexes

(A) Mass spectrometric analysis and quantification of Flag-affinity-purified

Tag-TRPV1 protein complexes derived from DRG of mice expressing either

high or low levels of Tag-TRPV1. Dot plot shows significantly enriched proteins

as log2 fold ratio (Tag-TRPV1/WT). The analysis reveals specific and robust

enrichment for GABAB1a protein.

(B) Immunostaining of DRG ofWTmice with anti-TRPV1 (red) and anti-GABAB1

(green) antibodies shows co-expression of both receptors in nociceptive

neurons. Scale bar, 50 mm.

(C and D) Immunoprecipitations of solubilized protein extracts derived from

DRG of Tag-Trpv1 or WT control animals using immobilized anti-Flag antisera

(C), anti-GABAB1, or control antisera (D). Western blots are probed with anti-

GABAB1 (bottom) or anti-TRPV1 (top panels in C) or anti-Flag antisera (top

panels in D). GABAB1 only co-elutes from affinity resin in the presence, but not

in the absence, of TRPV1 (bottom right panel in C). Note that DRG neurons

predominantly express the GABAB1a isoform and little or no GABAB1b. Simi-

larly, TRPV1 is specifically enriched in isolatedGABAB1 protein complexes (top

right panel in D). Note that endogenous (untagged) TRPV1 protein is precipi-

tated together with Tag-TRPV1, confirming the biochemical isolation of native

tetrameric TRPV1 protein complexes (top right panel in C).

(E) PLA of dissociated DRG neurons of Tag-Trpv1 andWT animals. Antibodies

against Flag and GABAB1 were used to detect proximity of the two receptors.

PLA signal (red) is only present in cell bodies and neurites derived from

Tag-Trpv1 animals. Scale bar, 25 mm.

(F) BRET assay using Rluc-TRPV1 and GABAB1-YFP fusion proteins in the

presence or absence of GABAB2, showing that TRPV1 and GABAB1 strongly

interact and that GABAB2 competes with TRPV1 for GABAB1 binding. Error

bars represent SEM.

(G) No interaction was detected between Rluc-TRPV1 and GABAB2-YFP. Error

bars represent SEM.

See also Figure S2 and Table S1.
mice and wild-type control animals and performed PLA using

anti-Flag and anti-GABAB1 antibodies. A robust PLA signal was

detected in Tag-Trpv1 neurons, but not in WT controls, demon-

strating that a TRPV1-GABAB1 complex is present in intact sen-

sory neurons and their projecting neurites (Figure 2E).

Intriguingly, we were not able to detect the GABAB2 subunit

either by mass spectrometry or by western blotting of TRPV1

protein complexes (Figures S2B and S2C). Similarly, KCTD pro-

teins—found to constitutively interact with the GABAB2 receptor

subunit (Schwenk et al., 2010)—were absent, and only GABAB1

selectively co-purified with TRPV1 complexes.

Additionally, when co-expressing TRPV1, GABAB1, and

GABAB2, lower amounts of GABAB1 protein were detected in

TRPV1 IPs when compared to samples containing TRPV1 and

GABAB1 alone (Figures S2D and S2E). These findings suggested

that TRPV1 and GABAB2 might compete for binding to GABAB1.

To further examine this possibility, we carried out biolumines-

cence resonance energy transfer (BRET) assays (Ayoub and

Pfleger, 2010) and expressed Renilla Luciferase BRET donor

(Rluc-TRPV1) and YFP BRET acceptor (GABAB1-YFP, GABAB2-

YFP, or YFP-TRPV1) fusion proteins in a heterologous cell

expression system. While GABAB BRET probes have been

characterized previously (Adelfinger et al., 2014), we first

confirmed the functionality of the TRPV1 BRET probes (Figures

S2F and S2G).

The BRET assay confirmed close association of TRPV1 and

GABAB1 (Figure 2F). Again, no interaction was detectable be-

tween TRPV1 and GABAB2 (Figure 2G). Moreover, similar to

the co-IP experiments (Figures S2D and S2E), co-expression
Cell 160, 759–770, February 12, 2015 ª2015 Elsevier Inc. 761



Figure 3. Effect of Baclofen on Native TRPV1 Receptors in Cultured

Sensory Neurons

(A) Electrophysiological recordings of cultured DRG neurons. TRPV1 currents

elicited by capsaicin (500 nM) were not affected by application of 100 mM

baclofen. Rise time (10%–90%, in s): control, 6.5 ± 1.8; Baclofen, 5.8 ± 1.3.

Decay (tau, s): control, 7.6 ± 1.5; Baclofen, 6.8 ± 1.8.

(B) Ca2+ responses (measured as normalized fluorescence ratios) of DRG

neurons stimulated repetitively with capsaicin (100 nM). NGF (100 ng/ml)

sensitized TRPV1 activity resulting in a larger response magnitude. Co-

application of baclofen (100 mM) with NGF resulted in inhibition of TRPV1

sensitization.

(C) Top: simplified cartoon showing the release of inflammatory mediators

during tissue injury. Components of the ‘‘inflammatory soup’’ activate diverse

receptor types, which signal via PKC, PKA, and lipidmodifiers, such as PLC, to

mediate TRPV1 sensitization. Bottom: quantification of averaged fluorescence

762 Cell 160, 759–770, February 12, 2015 ª2015 Elsevier Inc.
of GABAB2 interfered with the interaction of Rluc-TRPV1 and

GABAB1-YFP (Figure 2F), shown by the increased amount of

BRET acceptor (GABAB1-YFP) required to reach 50% of the

maximal BRET signal (Figures 2F, S2H, and S2I).

In summary, GABAB1 and TRPV1 form a protein complex that

appears to lack the G protein signaling subunit GABAB2.

GABAB Signaling Counteracts Sensitization of TRPV1
Given GABAB’s established role in modulating KIR3 and CaV
channels (Padgett and Slesinger, 2010), it is conceivable that

GABAB’s known analgesic property could stem in part from

inhibiting TRPV1 activity.

Different to its effect on KIR3 channels (Figure S3A), neither

calcium imaging nor electrophysiological recordings revealed

any influence of the GABAB agonist baclofen on TRPV1 currents

elicited by capsaicin (Figures 3A and S3B). Tachyphylaxis, a

form of rapid TRPV1 desensitization, was also not affected by

baclofen application (Figure S3C).

Under inflammatory conditions, multiple pathways sensitize

TRPV1. Paramount among the different inflammatory sensitizers

is NGF, activating parallel TRKA receptor signaling cas-

cades that converge on the capsaicin receptor to enhance its

sensitivity.

We thus tested whether NGF-mediated TRPV1 sensitization

is modulated by GABAB activation. To this end, we monitored

nociceptive neuron populations for NGF-enhanced TRPV1 activ-

ity using calcium imaging (Bonnington and McNaughton, 2003).

Indeed, pre-incubation of sensory neurons with baclofen (but

not saline) robustly blocked TRPV1 sensitization (Figures 3B,

3C, and S3D).

Apart from the receptor tyrosine kinase TRKA, several G-pro-

tein-coupled receptors (GPCRs) mediate TRPV1 sensitization

(Figure 3C). Notorious in this regard are bradykinin- and seroto-

nin-triggered GPCR cascades (Chuang et al., 2001; Huang et al.,

2006). Strikingly, baclofen was equally effective in inhibiting

TRPV1 sensitization induced by both inflammatory mediators

(Figures 3C, S3E, and S3F).

Given that the initial signaling events controlled by the two

GPCRs are quite different to that of TRKA, these results suggest

that GABAB exerts its effect at a converging point downstream of

the different pathways, potentially at TRPV1 itself. In agreement

with this hypothesis, bypassing upstream inflammatory receptor

signaling by direct pharmacological PKC activation also resulted

in baclofen-reversible TRPV1 sensitization (Figure 3C).

The inflammatory prostaglandin PGE2 mediates TRPV1 sensi-

tization largely via a Gs-coupled/PKA pathway (Gu et al., 2003;

Lopshire and Nicol, 1998; Moriyama et al., 2005). Intriguingly,

baclofen did not inhibit PGE2-mediated TRPV1 sensitization (Fig-

ure 3C). Canonical GABAB-Gi/o coupling would be expected to

effectively counteract Gs-mediated sensitization. In agreement
ratios as shown in (B). Bar graphs represent the ratios between peaks 6 and 5

(after and before application of inflammatory agents) in the presence or

absence of baclofen (100 mM). Baclofen effectively attenuated TRPV1 sensi-

tization induced by NGF (100 ngl/ml), serotonin (100 mM), bradykinin (10 nM),

and PMA (1 mM), but not by PGE2 (1 mM). Cells treated with vehicle or baclofen

served as a negative control. Error bars represent SEM.

See also Figure S3.



Figure 4. Reversal of TRPV1 Sensitization by GABAB Is Recapitulated in Cellular Expression Systems In Vitro

(A) Calcium responses elicited by 50 nM capsaicin pulses were assessed in TRPV1-HEK293 cells with or without GABAB after incubation with either baclofen

(100 mM), PMA (1 mM), or the combination of PMA+baclofen as indicated. Depicted are representative ratiometric traces from one experiment (n = 50 cells). PMA

promotes PKC-induced TRPV1 sensitization, and baclofen inhibits sensitization only in the presence of GABAB. Error bars represent SEM.

(B) Quantification of experiments shown in (A). PTX (500 ng/ml) did not abrogate the baclofen effect, indicating that Gi/o proteins are not involved in counteracting

TRPV1 sensitization by GABAB.

(C and D) Electrophysiology recordings of oocytes injected with Trpv1, TrkA, andGabaB, following TRPV1 activation with pH 5.8, before and after treatment with

NGF (100 ng/ml) (C) and NGF + baclofen (D).

(E) Quantification of the experiments shown in (C) and (D); sensitization was measured as log2 ratio of capsaicin-elicited steady-state currents before and after

drug treatment. TRPV1 sensitization mediated by NGF is attenuated by baclofen only in the presence of GABAB. Error bars represent SEM.

See also Figure S4.
with the apparent absence of the GABAB2 subunit from TRPV1-

GABAB1 complexes, this result further pointed at a potentially un-

recognized GABAB mechanism modulating TRPV1 sensitization

independent of Gi/o signaling.

Non-Canonical GABAB Signaling Counteracts TRPV1
Sensitization
To test directly whether Gi/o protein is involved in mediating the

observed GABAB effect, we pre-incubated sensory neurons

with pertussis toxin (PTX). This selective and potent blocker of

Gi/o proteins did not attenuate baclofen’s effect on TRPV1 sensi-

tization (Figures S4A and S4B), whereas another Gi/o-signaling

cascade present in DRG neurons was effectively inhibited

by PTX (Figures S4C and S4D), thereby serving as a positive

control.

The positive allosteric modulator CPG7930 potentiates

GABAB receptor signaling by binding to the GABAB2 subunit

(Binet et al., 2004). However, inhibition of TRPV1 sensitization

was not significantly enhanced by CPG7930 (Figure S4E) at

concentrations that robustly potentiated GABAB-induced KIR3

currents (Figure S4F), again pointing toward a non-canonical

GABAB pathway.

Next, we tested GABAB’s modulatory effect on TRPV1 sensi-

tization in two heterologous expression systems.
We first recapitulated PKC-induced TRPV1 sensitization in a

TRPV1-HEK293 cell line (Siemens et al., 2006). Pre-incubating

the cells with baclofen in the absence of GABAB had no effect

and did not abrogate PKC-mediated TRPV1 sensitization. How-

ever, co-expressing GABAB completely reverted TRPV1 hyper-

activity upon baclofen incubation (Figures 4A and 4B). Similar

to our results in native sensory neurons, PTX did not prevent bac-

lofen to exert inhibition of TRPV1 sensitization (Figure 4B).

Additionally, we reconstituted the NGF sensitization pathway

and expressed the TRKA receptor together with TRPV1 and

GABAB in Xenopus oocytes. Again, we found that baclofen

was able to significantly reduce NGF sensitization in a GABAB-

dependent manner (Figures 4C–4E).

In agreement with the observed close molecular proximity of

the two receptors, these results demonstrate a direct inhibitory

effect of GABAB receptors on TRPV1 sensitization, independent

of classical Gi/o signaling downstream of GABAB2.

GABAB1 Reverts TRPV1 Sensitization Independent of
GABAB2 Signaling
In order to examine the role of the two GABAB receptor subunits

in more detail, we next employed GABAB receptor knockout

mice. A conditional ‘‘floxed’’ GABAB1 mouse line (GabaB1
f/f; Hal-

ler et al., 2004) was crossed to Trpv1-Cremice (Cavanaugh et al.,
Cell 160, 759–770, February 12, 2015 ª2015 Elsevier Inc. 763



Figure 5. Surface Expression of GABAB1

in the Absence of GABAB2 Is Sufficient to

Mediate Inhibition of TRPV1 Sensitization

(A) Quantification of capsaicin responses in DRG

neurons from Trpv1-Cre;GabaB1
f/f (GabaB1

�/�),
GabaB2

�/�, and WT control mice in the presence

or absence of baclofen (100 mM) following incu-

bation with serotonin (100 mM). Error bars repre-

sent SEM.

(B) Cell surface expression of GABAB1 and

GABAB1-ASAA in the presence or absence of

GABAB2 or TRPV1 was assessed by measuring

the binding of [3H]CGP54626 in intact CHO cells.

Unspecific binding to non-transfected (NT) cells is

set to 1. Error bars represent SEM.

(C) BRET experiment demonstrating that RLuc-

TRPV1 and surface-localized GABAB1-ASAA-YFP

fusion proteins interact. Error bars represent SEM.

(D) Calcium responses in TRPV1-HEK293 cells

transfected with GABAB1 or GABAB1-ASAA after

incubation with either baclofen (100 mM), PMA

(1 mM), or the combination of PMA+baclofen. Error

bars represent SEM.

(E) Quantification of serotonin-sensitized capsa-

icin responses of cultured GabaB2
�/� DRG

neurons transfected with a fluorescent reporter

(tomato) in the presence or absence of

GABAB1-ASAA plasmid, incubated with baclofen

(100 mM). Error bars represent SEM.

(F) Representative western blot showing phos-

phorylated (pV1) and total TRPV1 protein (V1)

of HEK cells transfected with control plasmid,

GABAB1+B2, or GABAB1-ASAA alone after treatment

with PMA, PMA+baclofen, or vehicle. Three bio-

logical replicates are loaded onto the gel, but only

one representative lane for eachcondition is shown.

(G) Quantification of (F). Phosphorylated TRPV1

intensity values were normalized to total TRPV1

intensities and expressed as percent of baclofen-

mediated inhibition (PMA+baclofen/PMA). Error

bars represent SEM.

See also Figure S5.
2011) to specifically ablate the GABAB1 subunit in TRPV1-posi-

tive sensory neurons (Figure S5A). As expected, inhibition of

TRPV1 sensitization by baclofen was absent in sensory neurons

derived from conditional Trpv1-Cre;GabaB1
f/f mice, attesting to

baclofen’s high specificity and selectivity for the GABAB1 subunit

(Figure 5A). In DRG neurons derived fromGabaB2
�/�mice (Gass-

mann et al., 2004), the baclofen effect was also abrogated (Fig-
764 Cell 160, 759–770, February 12, 2015 ª2015 Elsevier Inc.
ure 5A), demonstrating that the GABAB2

subunit is required for mediating TRPV1

modulation, despite its apparent absence

from TRPV1 protein complexes and the

dispensability of Gi/o signaling down-

stream of the GABAB2 subunit.

It is well established that GABAB1 does

not translocate to the cell surface

autonomously, but the GABAB2 subunit

mediates trafficking of the heteromeric

receptor complex by masking an ER
retention signal present in the GABAB1 protein (Margeta-Mitrovic

et al., 2000; Pagano et al., 2001). We therefore asked whether

TRPV1 promotes cell surface translocation of GABAB1 indepen-

dent of the GABAB2 subunit. Analyzing cell surface binding of a

GABAB1-specific radioligand [3H]CGP54626 (Galvez et al.,

2001), we find that TRPV1, different to GABAB2, does not pro-

mote cell surface translocation of GABAB1 (Figure 5B).



Mutating the ER-retention signal encoded by the peptide

sequence ‘‘RSRR’’ to ‘‘ASAA’’ allows surface translocation of

GABAB1 independent of GABAB2 without changing GABAB1’s

signaling capability (Margeta-Mitrovic et al., 2000; Pagano

et al., 2001). Interestingly, this constitutively surface-localized

GABAB1 variant, GABAB1-ASAA (Figure 5B), interacts with TRPV1

similar to its wild-type counterpart (Figure 5C), suggesting that

theGABAB1-TRPV1 protein complex can form at the cell surface.

Expectedly, ER-retained native GABAB1 protein was not in the

position to mediate inhibition of TRPV1 sensitization when ex-

pressed in the absence of the GABAB2 subunit (Figure 5D). Strik-

ingly, surface-localized GABAB1-ASAA alone robustly inhibited

TRPV1 sensitization in HEK293 cells (Figure 5D). Moreover,

GABAB1-ASAA reinstalled baclofen-mediated inhibition of TRPV1

sensitization in GABAB2-deficient sensory neurons (Figures 5E,

S5B, and S5C), demonstrating the ability of GABAB1 to signal

to TRPV1 directly and independently of the GABAB2 subunit.

PKC phosphorylation of TRPV1 sensitizes the receptor (Man-

dadi et al., 2006) and is a convergence point downstream

of NGF, bradykinin, and serotonin signaling. We therefore

examined whether PMA-induced PKC phosphorylation of

TRPV1 is attenuated by GABAB1 signaling. Indeed, we find that

GABAB1-ASAA alone (similar to the native GABAB1+B2 receptor

pair) effectively inhibits PKC phosphorylation of TRPV1 (Figures

5F and 5G).

GABAB Reverts TRPV1 Hypersensitivity in Models of
Inflammatory and Neuropathic Pain
Given the robust cellular effects of GABAB1 on TRPV1 sensitiza-

tion, we next testedwhether these results translate into GABAB1-

mediated inhibition of pain hypersensitivity in animal models.

One nocifensive assay that allows robust measurement of

TRPV1-dependent heat hyperalgesia is the Hargreaves assay.

In this assay, inflammatory stimuli, such as NGF and bradykinin,

decrease the paw withdrawal latency in a TRPV1-dependent

manner (Chuang et al., 2001). Indeed, we observed significant

inhibition of sensitization in baclofen-injected mice compared

to mice that solely received NGF. No effects were detected in

Trpv1�/� animals (Figure S6A). To rule out any potential central

effects of baclofen (Sokal andChapman, 2003), we slightlymodi-

fied the testing paradigm and induced inflammatory hyperalge-

sia in both hind paws of the same animal (Figure S6B). We found

robust and dose-dependent inhibition of sensitization only in the

ipsilateral paw that had received baclofen, but not in the contra-

lateral paw (Figures 6A and S6C). Moreover, baclofen’s inhibitory

effect was completely blunted in conditional Trpv1-Cre;GabaB1
f/f

mice (Figure 6B). These findings are in agreement with our

cellular data (Figure 5A) and demonstrate that GABAB1’s benefi-

cial effect on heat hyperalgesia is mediated in peripheral TRPV1-

positive nociceptors in a cell-autonomous fashion, rather than in

higher-order pain-processing CNS areas.

Similarly, GABAB1 receptor activation strongly attenuated se-

rotonin- and bradykinin-triggered heat hyperalgesia but spared

PGE2-triggered heat hyperalgesia (Figures 6A and S6D), an ef-

fect that was not further enhanced by the positive allosteric

modulator CPG7930 that stimulates GABAB2 (Figure S6E).

For therapeutic purposes, it would be beneficial to identify an

intervention that is able to revert pre-existing pain hypersensitiv-
ity. Applying baclofen at a time point when NGF had already

sensitized nociceptors reduced heat withdrawal thresholds

(Figure S6F), establishing that GABAB1 activation has the capac-

ity for both prevention and reversal of capsaicin receptor

sensitization.

Given the ability of the GABAB1 subunit to inhibit sensitization

triggered by multiple different inflammatory pathways, we

asked whether it is also effective in attenuating hyperalgesia

as a consequence of intraplantar CFA (complete Freund’s adju-

vant) injection, a widely used model of persistent inflammatory

pain. We found that intraplantar application of baclofen

2 days after inducing CFA-mediated inflammation significantly

reduced heat hyperalgesia compared to vehicle-treated con-

trols (Figure 6C). The beneficial effect of a single dose lasted

for a minimum of 3 hr and had completely ceased 24 hr after

application.

Similar to the cellular assays, our behavior experiments

confirm that GABAB1 activation specifically attenuates hyper-

sensitivity of TRPV1 but did not impinge upon acute responsive-

ness of the receptor to either a heat stimulus, as tested in the

Hargreaves assay (Figure S6G), or assessed bymeasuring acute

capsaicin-induced nocifensive responses (Figure S6H).

GABAB1 and TRPV1 Co-Localize at Peripheral Nerve
Endings
Our data suggest that GABAB1 receptors mediate their anti-hy-

peralgesic effect in the periphery. Consequently, GABAB1 would

be expected to reside in free nerve endings in close proximity to

TRPV1. To elucidate whether the two receptors indeed co-

localize at nociceptor endings, we utilized transgenic GabaB1-

GFP reporter mice (Casanova et al., 2009). Similar to skin, the

cornea is densely innervated by TRPV1-positive sensory fibers,

attesting to strong reactions of the eye to inflammatory insults.

We analyzed both skin and cornea tissue for co-expression of

the two receptors in peripheral nerve endings that project from

DRG and trigeminal (TG) sensory neurons, respectively. Not

only did we find GABAB1 to be present in peripheral nociceptive

fibers, but we also observed substantial co-localization with

TRPV1 in nerve terminals (Figures 6D–6F and S6I–S6K and

Movie S1). In agreement with the close association of TRPV1

and GABAB1 found in Tag-TRPV1-positive DRG neurons (Fig-

ure 2E), 89% of TRPV1-positive corneal fibers co-localize the

two receptors at their terminals (Figure S6L).

GABA Is Released from Peripheral Nociceptors and
Modulates Pain Hypersensitivity
Interestingly, we found that local application of the competitive

GABAB1 receptor antagonist CPG52432 enhanced NGF-medi-

ated TRPV1 sensitization and induced a small but significant

increase in mouse pain behavior compared to NGF alone (Fig-

ure 7A). This result suggested that GABA, the native agonist

of GABAA and GABAB receptors, is endogenously present at

peripheral nerve endings to produce a basal GABAB receptor

tone that regulates TRPV1 sensitivity. Indeed, in blister fluid ob-

tained from human skin and extracted mouse corneal fluid, we

find GABA at concentrations (161 ± 42 nM and 335 ± 54 nM,

respectively) sufficient to inhibit TRPV1 sensitization in cultured

DRG neurons in a GABAB1-dependent manner (Figure 7B).
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Figure 6. GABAB1 Activation in Peripheral Nociceptive Terminals Decreases Thermal Hyperalgesia
(A) Thermal responses were measured using the Hargreaves test. NGF (2 mg/paw), serotonin (5HT, 100 nmol/paw), bradykinin (10 nmol/paw), or PGE2 (1 nmol/

paw) were injected into both mouse hind paws 30 min after unilateral administration of baclofen (Bac, 3 mg/paw) into the ipsilateral paw and vehicle (Ctr) into the

contralateral paw. Bar graph shows the differences in mean paw withdrawal latency upon radiant heat stimulation relative to the basal (non-stimulated) with-

drawal latency. Baclofen decreased thermal hyperalgesia for all inflammatory mediators, except PGE2. Basal withdrawal latencies were measured 24 hr before

the experiment. Error bars represent SEM.

(B) Baclofen does not attenuate NGF-induced thermal hyperalgesia in conditional Trpv1-Cre;GabaB1
f/f mice (GabaB1

�/�). Error bars represent SEM.

(C) Heat hyperalgesia 2 days after CFA induction is attenuated by baclofen (3 mg/paw) for a minimum of 3 hr when compared to mice that received vehicle only

(saline). Error bars represent SEM.

(D) Cartoon depicting skin or cornea innervation shown in (E) and (F).

(E) Immunostaining of skin and cornea sections obtained from GabaB1-GFP transgenic mice and labeled with antisera for TRPV1 (red), GFP (green), and Tuj1

(blue). Scale bars, 20 mm.

(F) Higher magnification of a single corneal fiber. GABAB1-GFP localizes in TRPV1-positive fibers and is concentrated at the terminal close to the epithelial surface

(demonstrated by orthogonal maximal projections in the x, y, and z dimensions). Scale bar, 10 mm.

See also Figure S6 and Movie S1.
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Figure 7. Peripheral Effects and Localization of GABA and Its

Release from Peripheral Fibers

(A) Withdrawal latencies in mice sensitized with NGF are significantly reduced

by the application of theGABAB1 inhibitor CPG52432 (17 nmol/paw) compared

to mice that received vehicle. Error bars represent SEM.

(B) 200 nM GABA is sufficient to attenuate serotonin sensitization of TRPV1 in

WT but not in Trpv1-Cre;GabaB1
f/f (GabaB1

�/�) sensory neurons. Error bars

represent SEM.

(C) Cartoon depicting cornea innervation shown in (D); nerve fibers emerge

from the sub-basal nerve plexus and branch out toward the corneal surface.

(D) Sensory fibers innervating the mouse cornea were immune labeled with

antisera decorating GABA (red) and TRPV1 (green). GABA is either distributed

throughout the length of the fibers (left) or concentrated at the terminals close

to the corneal surface (middle) of TRPV1-positive fibers. Although most fibers

contain GABA and TRPV1 conjointly, some fibers harbor GABA in the absence

of TRPV1 (right). Scale bar, 10 mm.

(E) Corneas of WT mice either treated with capsaicin (10 mM) or vehicle

(10 min, 32�C) and subsequently prepared for immunostainings using antisera

recognizing GABA and TuJ1. GABA staining was strongly reduced in capsa-

icin-treated corneas compared to control, indicating that TRPV1 activation

stimulates GABA release. Scale bar, 50 mm.

(F) Quantification of (E). Error bars represent SEM.

(G) Model illustrating inhibition of TRPV1 sensitization by GABAB1 receptor

signaling. TRPV1 is sensitized by a multitude of signaling cascades that are

initiated in the context of inflammation. Several cascades converge on PKC, a

kinase shown to robustly mediate TRPV1 sensitization via direct receptor

phosphorylation. Sensitization augments TRPV1 channel activity, which leads

to increased calcium influx and concomitant GABA release to attenuate

TRPV1 sensitization via GABAB1. Activation of this autocrine loop dampens

(or resolves) hyperactivity of TRPV1.

See also Figure S7.
Although GABA is well known for its presence in inhibitory

CNS neurons, much less is known about its localization in the

periphery. Using a GABA-specific antibody, we found GABA

localized to the terminal endings of corneal nociceptors, many

of which also express TRPV1 (Figures 7C, 7D, and S7A). Given

that primary afferent nociceptors are glutamatergic, it was unex-

pected to find GABA at their peripheral endings. Presumably, in

these fibers, GABA is stored in vesicles as many of the terminals

also reacted with antibodies for vGAT, the vesicular GABA trans-

porter (Figure S7B). Additionally, DRG and TG sensory neurons

exhibit low Gad2 transcript levels (Figure S7C). Consistently,

we find GABA to be present in DRG and TG neuronal cell bodies

(Figure S7D), albeit the GABA labeling was less pronounced

compared to that observed in TRPV1-positive sensory terminals

(Figure 7D), likely reflecting efficient vesicular transport to distal

terminals.

Given the juxtaposition of GABA vesicles and TRPV1 at

peripheral nerve terminals, we tested whether TRPV1 activation

and subsequent calcium influx would constitute an adequate

stimulus to release GABA. Stimulating isolated corneas with

capsaicin reduces GABA content at the terminals compared to

corneas kept without capsaicin, strongly suggesting that

GABA release has taken place (Figures 7E and 7F). The capsa-

icin-mediated release of GABA is specific to TRPV1 activation,

as it was absent from capsaicin-stimulated corneas of Trpv1�/�

mice (Figure S7E).

Taken together, these results support a model by which pe-

ripheral GABA limits (and resolves) TRPV1 sensitization via

GABAB1 receptors, directly at the site where painful stimuli are

first encountered (Figure 7G).
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DISCUSSION

Genetic-Proteomic Dissection of TRPV1 Modulation
Counteracting sensitization of TRPV1—without blocking acute

channel activity—is a promising approach for developing

analgesics. Using infusible peptides mimicking intracellular

TRPV1 domains, it has been demonstrated that interference

with TRPV1 sensitization has beneficial effects in models of in-

flammatory pain (Fischer et al., 2013). However, in contrast to

a multitude of pathways sensitizing TRPV1, endogenous path-

ways inhibiting sensitization have remained elusive.

Combining a genetic-biochemical approach with quantitative

mass spectrometry to probe the molecular environment of

native TRPV1 receptors, we report here the identification of the

GABAB1 receptor as a modulator of TRPV1 sensitization.

Non-Canonical GABAB Signaling Aborts TRPV1
Sensitization
In CNS neurons, most, if not all, GABAB receptor effects are

mediated by coupling to inhibitory Gi/o-type G proteins (Padgett

and Slesinger, 2010). Activating Gi/o-coupled signaling in sen-

sory neurons is able to promote TRPV1 sensitization (Forster

et al., 2009; Loo et al., 2012). Hence, it is difficult to reconcile

the observed inhibitory GABAB effect on TRPV1 sensitization

with a classical Gi/o-coupled signaling cascade.

Multiple lines of evidence suggest that a GABAB1 mechanism

that is independent ofGABAB2 signaling targetsTRPV1hypersen-

sitivity: (1) GABAB2 appears to be absent from GABAB1-TRPV1

complexes; (2) neither PTX nor CPG7930—inhibiting Gi/o activa-

tion or enhancing G protein coupling of GABAB2, respectively—

had any effect on GABAB’s potential to attenuate TRPV1 sensiti-

zation; and (3) plasma-membrane-localized GABAB1 can inhibit

TRPV1 sensitization in the absence of GABAB2.

Ourdata suggest that a ternary complex encompassingTRPV1

and both GABAB subunits is not favored; rather, GABAB2 com-

petes with TRPV1 for GABAB1 interaction. Interestingly, it has

been shown that TRPV1 activation by capsaicin can promote

dissociation of the two GABAB subunits (Laffray et al., 2007).

Thus, it is tempting to speculate that TRPV1 activation promotes

the formation of a surface-localized TRPV1-GABAB1 liaison at the

expense of a heteromeric GABAB1-GABAB2 receptor complex,

thereby priming the nociceptor to guard against sensitization.

GABAB Inhibits Convergent PKC-Mediated TRPV1
Sensitization
How does the GABAB1 receptor mediate its effect on TRPV1?

Given the close proximity of the two proteins, it is possible that

baclofen-induced conformational changes are directly trans-

mitted onto the TRP ion channel to control and regulate its sensi-

tization status. Thiswould be reminiscent of dopamine receptors,

which directly modulate GABAA-type ion channels, independent

of a downstream signaling cascade (Liu et al., 2000).

Alternatively, a putative signaling effector downstream of

GABAB1 may inhibit TRPV1 sensitization. Signaling cascades

downstream of GABAB1 (and independent of GABAB2) have

remained elusive. However, b-arrestin2 has been implicated

to act downstream of GABAB receptors, independent of Gi/o

protein signaling (Lu et al., 2012). b-arrestin2 has also been
768 Cell 160, 759–770, February 12, 2015 ª2015 Elsevier Inc.
proposed to modulate tachyphylactic TRPV1 responses (Por

et al., 2012), suggesting that this protein could, in principle,

couple GABAB receptors to TRPV1. However, we did not detect

b-arrestin2 in TRPV1-GABAB1 protein complexes, nor did we

find tachyphylactic TRPV1 responses to be modulated by

GABAB receptor activation (Figure S3).

Different to the important functions for b-arrestins in other

GPCR signaling cascades, their role in GABAB-mediated

pathways is less clear (Perroy et al., 2003; Sudo et al., 2012),

suggesting that b-arrestin2 is an unlikely candidate to mediate

the modulatory action of GABAB1 on TRPV1.

Different than the inflammatory pathways initiated by NGF, se-

rotonin, or bradykinin, we find that PGE2-triggered sensitization

of TRPV1 was not inhibited by the GABAB1 receptor. The differ-

ential susceptibility to GABAB1 receptor modulation coincides

with different points of signal convergence on TRPV1; a common

denominator of NGF, serotonin, and bradykinin signaling is the

activation of PLC/PKC pathways that result in sensitization of

the capsaicin receptor (Huang et al., 2006). By triggering PKC

activation directly, we find that this branch of TRPV1 sensitiza-

tion can be inhibited by GABAB1 receptor activity, resulting in

reduced TRPV1 phosphorylation.

In contrast, PGE2 signaling leads to PKA-dependent phos-

phorylation of TRPV1 (Gu et al., 2003; Lopshire and Nicol,

1998; Moriyama et al., 2005), and its sensitizing effect was not

attenuated by GABAB1. Phosphorylating TRPV1 at different sites

may have different functional consequences despite a similar net

effect on sensitization—recent studies demonstrate unique

structural features of TRPV1 with an upper and lower gate that

are independently engaged by different pro-algesic agents to

open and modulate ion channel conductance (Cao et al.,

2013). Thus, it is conceivable that differential phosphorylation

by PKC and PKA mediates different types of TRPV1 gating, the

first of which is susceptible to GABAB1 receptor-mediated inhibi-

tion, whereas the latter is not.

Given that PKC is not the sole mediator of TRPV1 sensitization

utilized by the inflammatory pathways susceptible to GABAB1

inhibition, it is very well possible that other mechanisms are

also targeted and that GABAB provides a broader protection

(or ‘‘shielding’’) against TRPV1 sensitization.

GABAB receptors trigger a surprising range of different cellular

responses. Heteromeric receptor assembly, aswell as the recent

discovery of auxiliary GABAB subunits (Schwenk et al., 2010),

has been proposed to explain contextual signaling diversity

and challenge the classical view of GPCR organization and func-

tion. Our study further corroborates GABAB receptor signaling

complexity and highlights a GABAB2-independent pathway that

mitigates TRPV1-mediated pain hypersensitivity.

Peripheral GABA Regulates Nociceptor Sensitization
It came as a surprise to find not only GABAB receptors but also

their cognate agonist, GABA, localized at peripheral nerve termi-

nals. Classically, vesicular GABA is a hallmark of inhibitory syn-

apses of CNS neurons. Although it is known that the excitatory

transmitter glutamate is present in peripheral nerves, where

it may promote excitability and neurogenic inflammation (Miller

et al., 2011), to our knowledge nothing similar has been reported

for inhibitory transmitters.



Here, we provide evidence that, under physiological condi-

tions, peripheral GABA limits TRPV1-mediated hyperalgesia. It

will be interesting to ascertain whether the peripheral GABA-

GABAB1 feedback on TRPV1 is altered under pathological pain

conditions. Exploiting this endogenous feedback system (e.g.,

by promoting peripheral GABA release or rendering a pharmaco-

logical GABAB1 agonist non-permeable to the blood-brain bar-

rier) may be a valuable route for anti-pain therapy, circumventing

severe adverse effects associated with baclofen’s dominant

CNS activity.

Processing and modulation of painful signals have mainly

been attributed to higher-order brain centers such as the dorsal

spinal cord and beyond. Our model may—after all—not only

inspire new approaches for developing TRPV1-centric pain ther-

apeutics, but it also offers a fresh look at modulation of sensory

input directly at the site of sensory transduction in nerve

terminals, a paradigm that may also be relevant for other so-

matosensory modalities.

EXPERIMENTAL PROCEDURES

Generation of Tag-Trpv1 BAC Transgenic Mice

The SF (Strep-Flag) tag was seamlessly integrated into a mouse BAC clone

(RP23-390G23) encoding the Trvp1 genomic locus, and transgenic mice

were obtained by pronuclear injection.

Behavioral Studies

All animal experiments were in accordance with the local governing bodies.

Thermal pain was assessed by measuring the response latency to a radiant

heat stimulus focused onto the plantar surface of the paw (Hargreaves assay).

Biochemical Protein Complex Purification and Mass Spectrometry

Analysis

Following plasma membrane fractionation of DRG, protein complexes were

affinity isolated using Anti-Flag magnetic beads. Liquid chromatography-tan-

demmass spectrometry (LC-MS/MS) analysis was performed with in-solution

digested affinity purified protein samples on a Q Exactive mass spectrometer

(Thermo Scientific). Label-free quantitation (LFQ) was performed using

MaxQuant Analysis Software.

BRET and PLA Assays

Luminescence and fluorescence signals of COS-1 cells transiently transfected

with plasmids encoding Rluc BRET donor and YFP BRET acceptor fusion pro-

teins were analyzed using an Infinite F500 microplate reader (Tecan).

PLA was performed using Duolink reagents (Sigma) per manufacturer’s

instructions.

Calcium Imaging and Electrophysiological Recordings

For calcium imaging experiments, primary sensory neurons or HEK293 cells

were loaded with the calcium indicators Fura-2 or Cal-520 AM. Electrophysio-

logical recordings were performed using a 700B amplifier and 1440A Analog

Digital Converter (Molecular Devices) in whole-cell voltage clamp configuration.

GABA Measurements

GABA concentrations were determined by LC-MS/MS at Brainsonline

(Groningen).

Statistical Analyses

Data are presented as mean ± SEM. Statistical significance was evaluated

employing Student’s t test for paired comparisons unless indicated otherwise.

p values < 0.05 were considered statistically significant, with *p < 0.05, **p <

0.01, and ***p < 0.001.

Additional Information is available in the Extended Experimental

Procedures.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven

figures, one table, and one movie and can be found with this article online at

http://dx.doi.org/10.1016/j.cell.2015.01.022.
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Söderberg, O., Gullberg, M., Jarvius, M., Ridderstråle, K., Leuchowius, K.J.,
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